UNCLASSIFIED

AD NUMBER

ADB183009

NEW LIMITATION CHANGE

TO

Approved for public release, distribution
unlimited

FROM
Distribution authorized to U.S. Gov't.
agencies and their contractors;
Administrative/Operational Use; 1955.
Other requests shall be referred to
National Aeronautics and Space
Administration, Washington, DC.

AUTHORITY

NASA TR Server Website

THIS PAGE IS UNCLASSIFIED




~ PR e —. s e

AD-

3000 <. TEGe
\\\\\\\\\ \\ \\\ \\\\\\\\ il

NATIONAL ADVISORY COMMITTEE
FOR AERONAUTICS

'REPORT 1249

| A UNIFIED- TWO-DIMENSIONAL APPROACH TO THE |
- CALCULATION OF THREE-DIMENSIONAL HYPERSONIC
FLOWS, WITH APPLICATION TO BODIES:
' OF REVOLUTION

i _
By-A. 1. EGGERS, JR., and RAYMOND C. SAVIN

DTIC

ELECTE R

é@g APR 11 1994

94" 10779 LTIC GUALITY TNEPECTED 3
I lIl”lWlII)I”Il M e




REPORT 1249

A UNIFIED- TWO-DIMENSIONAL APPROACH TO THE
CALCULATION OF THREE-DIMENSIONAL HYPERSONIC
FLOWS; WITH APPLICATION TO BODIES
OF REVOLUTION

By--A..J. EGGERS, JR., and RAYMOND-C. SAVIN

Ames -Aeronautical Laboratory.
Moffett Field, Calif.

Accesion-For ~ —

NTIS CRA&I- [n} ’
DTIC TA8B

-Unannounced- -
Justification _

................ .

By

Joe -3 3 - - -
Distibution]

Availability Codes

pist | * Vas',gg;g,’ o DTIC QUALITY INSPECTED &
4
N [ R e 1




National Advisory Committee for Aeronautics
Ieadquarters, 1612 IT Street NW., Waskington 26, D. C.

Created by act of Congress approved-March 3, 1915, for the supervision and direction of the scientific study
of the problems of flight (U, S. Code, title 50, sce. 151). Its membership was increased from-12:to 15 by act.
approved March 2, 1929, and to 17 by act approved May 25, 1948. 'The members are appointed by the President,

and serve as such without compensation,

Jenose C. Hunsaker, Sc, D,, Massachusetts Institute of Technology, Chairmen

Lroxarp Canmicnaes, Pn, D, Secretary, Smithsonian Institution, Vice Chairman

Jnseen P. Apaus, LL. B,, Vice Chairman, Civil Acronautics Board,

ALLEXN V. Asmiy, Pu. D, Director, National Bureau of Standards.

Pnestoxy R.-Basserr, M. A,, Viee President, Sperry Rand Corp.

Drreey W.Broxk, Pu. D, President,- Rockefeller-Institute for
Medica) Research.

Tuomas S. Comsg, Viee Admiral, United-States-Navy, Deputy
Chief of“Naval Operations (Air).

Frepenrick C. Crawrorp, Sc. D., Chairman of the -Board,
Thompson-Products, Inc. .

Raren S. Dasoy, D, Eng,, President, Trans-World Airlines, Inc.

Jases- H. Doourrrie, Se, D., Vice President, Shelt Oil Co,

CanrJ, Prixasraq, Rear Adwiral, United States Navy, Assistant
Chief for_Field-Activitics, Burcau of Aeronautics.

Doxaup L. Purr, Licutenant General, United States Air Foree,
Deputy Chief of Staff (Development).

DoxaLp A. Quartes, D, Eng,, Secretary of the-Air Force,

Antnur ‘E. Raysoxp, Sc. D., Viee President—Engineering,
Douglas Aircraft-Co., Inc. )

Fraxcts W. Retcngioereer, Sc. D,, Chief, United States
Weather Bureau, )

Lovis 8. Rorusenmwn, Pu. B, Under Sccretary-of Commerco
for Transportation,

Natuax-F. Twining, General, Umted States-Air=Force, Chicf
of Stafl:

Hvuen L. Drypex, Pu. D., Direclor

Joux W. CrowLey, JR.,, B. 8., Associale -Director for Research

Joux F. Vicrory, LL. D., Ereculive Secrelary

Evwaro-H. CnamBeruiy, Freculive-Officer

Hexry J. E. Rew, D.-Eng., Dircctor, Langley Acronautical-Laboratory, Langley Field, Va.

Ssimit J, DeFraxce, -D. Eng., Dircctor, Ames Acronautical Laboratory, Moflett Ficld, Calif.

Ebwarp R, Suare, Sc. D.,-Director, Lewis Flight Propulsion-Laboratory, Cleveland, Ohio

Warrer C, Wiuniams,-B: S,, Chief, High-Speed-Flight:Station, Edwards, Calif,

N

T e

e

[P




REPORT 1249

A UNIFIED TWO-DIMENSIONAL APPROACH TO THE CALCULATION OF THREE-DIMENSIONAL
HYPERSONIC FLOWS, WITH APPLICATION TO BODIES OF REVOLUTION:!

By A. J. EcaEns, Jr,, and_ Ravmoxv C, Savin

———

SUMMARY-

A stmplified two-dimensional method for calculating three-
dunensional steady and nonsteady hypersonic flows of an
anviseid (non-heat-conducting) gas is deduced from characler-
1stics theory.  This method s appropriutely termed a generalized
shock-expansion method. 1l 13-demonstrated that the method is
applicable when disturbances-associated with the divergence of
streamlines in planes lungent-to- a. surface are of secondary
importance compured to-those associaled with the curvature of
streamlines in planes normal to-the surface. When this con-
dition s mel, surface sireamlines-may be treated as geodesics,
which, in turn, may be related-to-the yeometry of the surface.

It is inquired further if-the -two-dimensionality of inviscid
hypersonic flows has a counterpart in hypersonic doundary-
layer flows. This question is answered in the affirmalive,
thereby permitling a unified two-dimensional approach lo
three-dimensional hypersonic flows.

Tlis concepl s applied to bodies of revolution in sicady. flight-

and, with the assumption that-flow at the verlexr is conical,
approximale solutions for the flow field-are obtained for values
of the hypersonic similariiy parameler (. e., the ratio of the
free-stream Mach- number to the fineness ratio of the body)
grealer than about 1 and for small-angles of allack. Surface
streamiines are approximated -by-meridian lines and the flow
field 1s caleulated in meridian planes. Simple explicil expres-
sions are obtained for the surface. Mach numbers and pressures
in the spectal case of slender bodies.
The validity of theory 1s checked-by_comparison with surfuce
_pressures and shock-ware shapes obtained experimentally at
Mack numbers from 3.00-to 6,30-and- angles of attack up to
15° for two ogives having fineness ratios of 3and . Al thelower
angles of alluck, theory-and experiment approach ayreement
when the hypersonic similarily parameler s in the neighborhood
of 1 or greater. Al thelarger angles of allack, theory lends lo
break-down noticeably on the leeward sides of the bodies.

INTRODUCTION

The calculation of flows about-obicets, primarily missiles,
traveling at high supersonie speeds is-now-generally accepted
as a-matter of more than academic-interest. The difficulty
of these ealeulations_stems:nzlarge-part-from the fact that
at such high speeds disturbauce-velocities are ot necessarily
small compared to the velocity- of sound, nur are entropy
gradients necessarily negligible in the disturbed flow field
about a body, cven though it-may-be of normal slenderness.
Thus, for example, the relatively-simple linear theury, which
has proven so valuable i studying flows at fow supersonic

speeds, loses much of its wtility in the-study-of high-super-
sonic-speed flows. In the quest for methods especially suited
to caleulating high-supersonic-speed flows, notable progress
has beenmade in the development of similarity laws relating
the flows about slender three-dimensional shapes in both
steady (see refs, 1, 2, and 3) and nonsteady motion (sco
refs. 4 and-5). Steady two-dimensional_flows-have received
perhaps-the greatest attention from the standpoint of caleu-
Iating-specific flow fields, and it would seem-that-with tools
ranging -{rom -the-haracteristics method (see,-e.-g., refs. 6
and-7) fo-the ¢ -eralized shock-expansion-method (ref. 7)
the problem-is 1 casonably well in hand, at-lesst insofar as
inviseid, contimvum flow is concerned. A more or less
analogous situati. n exists with-regard-to the nonlif.ing body
of revolution (sce, ¢. g., refs. 6 R, 9,-and-10) although it
seems:that only in‘the case xf *he cone has-a-method-(ref. 10)
of simplicity comparabloe to that of the lincar-theory been
developed for caleulatng the whole flow field.

When-one departs from these-relatively-simple flows, the
number of tools for carrying out practical calculations de-
creases sharply. 'Thus, for example, in the category of
inclinéd_bodies of revolution, it appears-that-only bodics at
small:angles of attack have been handled adequately, usually
by -cither-the method of characteristics-or-some-other step-
by-step - caleulative procedure (see, e. g., refs. 6, and 11
through 14). In the case of steady flow about general three-
dimensional shapes, aside from Newtonian flow concepts,
whichzare strictly applicable at Mach numbers exceeding all
limits,-only the characteristics method has-apparently thus
far reccived-serious attention (refs. 15, 16, 17, and 18), 1t
is-true, of course, that the method is tedious and time con-
suming-{o apply, but the relatively exact-solutions obtained
provide a valuable check against the predictions of more
approximate but simpler theories. In-addition,-however, as

-demonstrated in reference 10, u study of-the-compatibility

cquations of-the characteristics mothod:ean=prove useful in

-determining simplified mothods for caleulating more complex
flowfields.

With these -points in mind, it-is-first undertaken in the
present-report to redeveiop characteristics-theory in a form
whicle enables us to obtain a simplified -fsvo-dimensional

' method-for culculating buth steady-and nousteady_hypersonic

flows about hree-dimensional shapes. Viscous flows are
then-considered and it is demonstrated that-the-two-dimen-
sionalcharacter of inviscid hypersonic flows has a counterpart
in hypersonic boundary-layer flows. The valility of the
analy tical methods of this paper is-checked by comparing

1 Supersedes NACA TN 231 entitled, “On the Calculation of Flow About Objects Traveling at-Hizh Supersonie Speeds,” by A. J. Eggers, Ji., 1952,
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the predictions-of theory with. experimental results for the
surface pressures-and bow shock waves of lifting and non-
lifting bodies of revolution at Mach numbers from 3.00 to 6.30.

NOTATION
a local speed of sound
. . axial-foree
N axtal-foree cocflicient, ———
pe)
normal forco
Cy normal-force coefficient, — 7.
17 (%)
Cn pitching-moment coefficient,
moment about bm_l\:_\'m tex
(l’
Q¥ {
¢y specific-heat at constant- pressure
ce specific heat at constant. volume
Gy, (s, characteristic coordinates in X-Z plane (%, is
positively inclined with-respect. to X)
N ) —
C, pressure cocfficignt, Lq—l)*“’
d maximum diameter of body- of revolution
. S . d
K hypersonic similarity parameter, M, T
} characteristic body length-(measured from vertex
to:most forward point: of maximum diameter)
M Mach-number (vatio of local-velocity to local speed-
of-sound)
» statie pressure
M total pressure
T free-stream dynamic pressure
S entropy
{ time
u, v, w  componenis of fluid velocity:-along the X, ¥, and 7
axes,-respectively
7,4,z  rectangular coordinates along the X, ¥, and Z axes,
respectively
x, r, ¢  cevlindrical coordinates
Z center-of-pressure position (measured from body
vertex)
angle of attack
. . ¢
ratio of specific heats, ’5’3
¥
) angle-between X axis-and-tangent to projection of
streamline (or pathline)-in_X-Z plane
Sy semivertex angle of hody
A angle between X axis and-tangent-to projeetion of
strearline (or puthliue)*iu A=Y plane
u Mach angle, sin~! '\7
v ray-angle for Prandtl-Meyer=flow
mass-density
SUBSCRIPTS
© free-stream conditions
A, B,

o, ... conditions at different pomnts:in-the flow field

N conditions on the surface-at the vertex of a body

-fluid of density p, static-pressure p, and entropy S.2

s conditions immediately behind the shock-wave at
the vertex of a biody

INVISCID FLOW

This study proceeds from the Euler momentum-equations,

bu Jou, ou  10p
S S U =";5r - M
Ov, Or, v dv__10p
bt'*u 0r+ OJ+ 3z oy @
ow, dw, dw ow__19p \
or e oz ty OJ+ dz  poz @)
the continuity equation,
+3 (pu) b(pv) +0 (pw) —0- )
the equation of state,
p=p(,S) (5)
aud the energy equation,
aS-i—u +v +w «—-—«() ©)

where u, », and w are=the components of velocity: at. time ¢
along the .X, Y, and Z axes, respeetively, of -an element of the
To put.
these expressions in-u-more tractable form,-it-is-convenient
toraline the .V axis at time .with the direction of-the resultant
velocity at the origin of the coordinate system. Thus
equations (1) through-{) and equation (6)-siimplify, respec-
tively, in the region of-the origin, to

S ot 3 @
g§+u dr ‘:;%7)“ ©
%ltv " aw+1 gl’ =0 ©
gf-%'u bp bu+gz+ 55)=0 (10)
and
+u ‘3*5—0 (11)

~whick-relations are-basie-to-the subsequent-analysis.

STEADY FLOW

Characteristics theory.—Compalibility relations describing
the behavior of fluid properties along characteristic lines

* For certain ealeulations It may be desirable to proceed from Inote general equatlons which
includde effects of heat and mass addition to (o1 subteaction from) the flows as well as effects of
impressed forces (e, x,.Rnullauomlonna:ncuc) Sueha procedure may eactly be developed
froty that presentsd Bere by-followIng-the tmethod of Qudeddey (reférence 6 for two-
dimenslonal low,
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TWO-DIMENSIONAL APPROACH TO CALCULATION OF THREE-DIMENSIONAL HYPERSONIC FLOWS 3

in supersonic flow may, of course, be obtained by proceeding
formally with the theory -of characteristics for the guasi-

linear partial differential equations which depict the flow.

In the-interests of simplifying both the derivation of these
relations-and their resultant. forms, however, it seems desir-
able to proceed in & more intuitive manner, assuming a
priori-that the pertinent characteristic lines ave Mach lines,
and atilizing the implication from two-dimensional flow
studies that perhaps the most convenient dependent vari-
ables are pressure-und flow inclination angles.

Now it'is clear that-in the case of steady flow all devivatives
with respeet to time disappear from the above relations.
Thus, assuming there are no shock waves present in the
region of-the origin.? we may write, with the aid of equations
(5) and (11),

Op_0p} Op_10p 12
dr bprx “#ox -
where a-is the local speed of sound in the fluid.  Combining
cquations (7), (10), and (12), there is then obfained the

relation
* —_—nn?
=17 pu [u (Db bw)] (13)

or, defining A as the angle between the X axis and the
tangent to the projection of a streamline e the X-1" plane,
nml i an analogous manner, the angle § i the X-Z plane
(sce fig. 1), we bave

!,--Proiechon of streomine in X-2 plone
{

) | —
Streomiine--~. === 3

—

L-Projection of streomiine in XY plane
Y
Fiagure 1~~Streamline projections in X«¥ and X-7 planes.

Dp= —pt’ (04, 05
Ar=1\sy sz 19

Transforming the derivatives with respeet to £ and : to
derivatives in the characteristic or %, and €%, divections
in the X-Z plane (', is positively inclined with respect
to X, thus d();or= M@\ A= DI(,AC, 1 90,0(] and
(), 0= QL2000 —d(),0(%)) there results from this
equation

O ,op _, pu' [ 1
oG o0, = pap—1 Lot a( . M( )] {r5)
In an analogous mauner, there is obtained from equation (9)

the relation

o _dop_ —pit (2, 0
oC 0% =1 \ath ol (16)

et =
11 shock wases are prezent, the appropriate obllque shock equations are employed,

Adding these two expressions then yields

op __ mpu® 0A -
0C: 4] a('lz 1\[(5 ):l an

while subtracting yields

o _ o o4 )]
o0, NA=T O Y] (b (18)

Squations (17) and (18} are compatibility equations for
characteristic or Mach lines in the X-Z plane.t  Indeed, if
it is_further -required -that the .X-Z:plane be the osculating
plane of-the streamline -passing-through the origin, that is,
the plane-contammg the -principal radius of curvature and
tangent to-this-streamline (at the origin), then these equa-
tions are -the essential relations for determining pressure
and flow inclination throughout a flow ficld. This point
becomes:evident-when it is-observed that, with the imposed
requirement. (v1z, 0A70r=0), the additional information
derived -from studying flow in the X-Y plane is simply
that.deduced:from- equation (8), or. as would be expeeted,

op_
51/_0 aw
Tu order-to-constiuct a-flon field, Luwevet, it is necessary
to -hnow -the-manner - -whick the osculating plane rotates
and, correspondingly, how the principal curvature varies as
we proceed-along a strenmline.  ‘This information is obtained
from equations (2) and (3). Differentintion with respect
to-r yiclds
%A 1 O /Op\ dAds

o TE e - W - T 9
5= i 07 \3y ) 757 or (20)
and
% __ 1o bp) ( ",a_li 1 op) s (20
or'™  putor woxr ' pa?dx/or
-respectively.

These and the previously derived expressions form the
basis of-e-characteristics theory for steady three-dimensional
flows (see Fef. 20), Consistent with the objectives of this
paper, however; we are interested in these results as they lead
us-to.a more approsimate but, by the same token, 8 more
simplificd-method- of=caleulating the three-dimensional flow
of-a gas:atzhigh-supersonie speeds,

Simplified two-dimensional theory.—It is well at the out-
set-of this analysis to establish, insofur as is practicable, the
type-of-flows-to-be-treated.  In this connection, it is con-
venient to employ the hypersonic similarity parameter
@i. c., theproduct of the flight. Mach number and the thickness
ration of n body) as-a measuring stick.  In flows charac-
terized by values of the hypersonie similarity parameter
small-compared to 1, that is, flows in which the body is
extremelyslender-andlies close to the axis of the Mach cone,
there-is no-apparent-reason to believe thet the linear theory
will not-be as useful-an-approximate method of caleulation

It ty noted that these expresstons contaln not only in the ch {stlc dirces
tions but alsy degivatives with respect to the {ndependent varfable g, This type of reault is
to b expected as pointed out by Coburn tref. 19).

- - - - .
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as at.low supersonic speeds.  In flows characterized by values
of the parameter up to about 1, the second-order theory first
cnunciated by Busemann (ref. 21) for airfoils and more
recently genetalized to three-dimensional flows by Van Dyhe
(ref. 9) and-Moore (ref. 22) should prove a useful approxima-
tion. On the other hand, for flows about more or less
arbitrary shapes, there is apparently-no approximate method
of calculation generally applicable with engincering accuracy
at values of the hypersonie similarity parameter appreciably
greafer than 1,

In the limiting case of indefinitely high free-stream Mach
number (and hence similarity parameter) and a ratio of
‘specific heats equal to 1, we have the Newtonian impact
theory (ref. 23) and its refined counterpart, accounting for
centrifugal=forces in the disturbed flow, developed first by
Busemann (ref. 24) and more recently treated by Ivey,
Klunker, and Bowen (ref, 25). The-impact theory has-heen
employed-with some success-by-Grimminger, Williams,.and
Young (ref. 26) and others to-predict surface pressures-on
bodies of revolution at values-of the similarity parameter
appreciably greater than 1, although-it-should be remarked
in passing-that this suceess is-in-part, at:least, fortuitous, as
perhaps s best evidenced by the-fact that the more-exaet
theory (within the framework of-the underlymg assumption
of M-,y =>1)of Busemann is considerably less accurate
under corresponding eircumstances,  Asshown in veference 7,
neither the Newtonan impact nor the Busemann theory
apply with-good accuracy to airfoils except at values of the
similarity-parameter quite large compared to 1, correspond-
ing, for example, in the case of thin-airfoils to fhight -speeds
considerably wn excess of the escape speed at sea level.
Perhaps-the foremost shorteommng:of-these theories s, how-
ever, that, irrespeetive of the shape to which they are applied,
they provide no information-on the structure® of the dis-
turbed flowfield which ig, of course, of fimte extent adjacent
to the surface-at flight Mach-numbers presently of mterest
suy Mach numbers less than the-eseape Mach number at
sea level).  Such informationas, for esample, unportant-to
the determination of the flow about=eantrol surfaces and._the
like which-may be loeated in thisfield.

Tn view-of the preceding discussion, it seems clear that-in
the high-supersonic-speed flight regime, a need for an
approximate method of analysis-lies in the realm of flows
characterized by values of the hypersonic stmilarity param-
eter greater-than 1. An attempt-will therefore be made to
obtain-a-method meeting part of-this need, attention-being
focused primarily on flows characterized by large values_of
the similarity parameter. To-tlus:end, it is convenient-first
to employ equation (1-1) rewritten-in-the form

op_. ovt 1=DN_ 1 /o
oz "fi[’;L Or. VD). ) f\[z,, OJ)] (22
where e
05/0C, )
D= 0400y, 23)

Now cousider for the moment a-surface streamline alined
in the z direction, and impose the-requirement that the X7
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to the sutface of 5 Hody.
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plane be tangent to this streamlite amd normal to the sur-
faco at the poiut of tangency (the ongin). The X—Y plane
is then, of course, tangent to the surface-at this point.  Ob-
serving the last-term in the brachets on e right-hand side
of cquation (22}, it is noted (sce-fig. 2) that

=

Y
\
_’.-—«‘-—’/
=3
._.__.l;rli
\{'._'; 7 ]
&\1_\\
- ; —

-~ . ;

Frovus 2.- -Divergence of streambnes m tangent pane. .

0A 1 }

Sy '
where 7 is the radius of curvaiure of-the-line normal to the

projections of streamlines in the .Y~} plane, and passing

through the origin, At the high Mach numbers uider
consideration, the disturbed How field-is-confined to a region

of small extent normal to the-surface-of a body; henee -t

may be oxpeclo(l:lhuL r’ will he primarily a funetion of body

shape and attitude.® This heing the-case, it follows then :
that the term (1 \.\7‘1'1 ), r) will deerease in absolute
magnitude with-inereasing Mach number of the flow about
the body. -Consider now the term (95dr)(1—D,/(1+ D;).
We note that-03/dr= 1/RR where R-is-the radius of curvature
of the projection of a streamline in the X-7 plane and,
by reasoning unalogous to that used=in-considering »’, is not .
expeeted to vary significantly with Mach number in the
disturbed flow field. Let us assume for the moment that

the quantity (1 Dp/(1 4 D,) is also relatively independent

of Mach number. With this agsumption, it is clear that
cquation (22) approaches the cquation for two-dimensional

flow as the free-stream Mach number,.and henee the hyper-

sonic similarityzparameter of the flow becomes large compared

to 1. The compatibility equations-(eqs. (17) and (18)) are
affected in a-similar manner; thus it is apparent that the

flow when viewed in-the X'~ Z plane-approaches the two-
dimensional type. In this case, however, as shown in refer-

ence 7, so long us the Mach number and ratio of speeific :
heats of the disturbed fluid are notztoo close to 1, D, issmall
compared to.1, and-hence the flow approaches the generalized
Prandtl-Meyer type (i. e, flow in which pressure and
inclination angle are approximately constant along curved
first-family Mach lines),  Ouwr flow equation may then be
wiitten .

E)p pu‘ (TR

where it ig required. explicitly that

e 1 s A
ibr, > Y119 i (26)

——

¢ 1t fx interevting to note that in denl gas flows, 7/ beoomes Just o function of these varfables
4% he value of the hyjarsons latity It g I dto b e work
ol Vsnallah, seh 4 notng thit bis tesuits can aeariddy be extended o threedimengonal
ideat gas flows udng the charaeteristios method of this pagxy),
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TWO-DIMENSIONAL APPROACH TO CALCULATION

or, in effect, that disturbances associated with the divergeuce
of streamlines in tangent planes must be of secondary im-
portance compared to those associated with the cury ature of
streamlites in planes normal-to the-surfece. Upon closer
examiuation it can easily be deduced that this requirement
stems directly from the continwty equation and the condition
that it be of the two-dimensional type in the X-Z plane (i. e,

—g—g-’l»}g—; in eq. (10)).

From these considerations it appears that the conclusion
of reference 10 that mviscid flow along streamlines down-
stream of the nose of nomnchined bodies of revolution travel-
ing at high supersonic speeds may-be of-the Prandtl-Meyer
type un regions free of shock waves; applies also to other
steady three<dimensional flows. It is-true, too, that i the
latter case, just as in the former case, this conclusion is
conststent with the predictions-of =thehy personic similarity
law for steady flow about slender shapes.

-One yuestion remains to be considered, namely, where do
the streamlines go e the disturbed flon?  To clarify this
matler, it is comvenient to-study further the implications of
cquation (235, For thus purpose we combine eyuation (25)
with the transformation equation
0A_AM /oA  dA

dy~ 2 \d(Yy, 0,

to obtain the relation

8

08 AL joa Al
ox

: o
oA =1100, 30 @0

From this relation we deduce exther-that to the order of a

9 Ay L=}
number (curvature) small compared to ‘xf\l[ Hosi

{or}
07 A -
se oy, @7
or that '
03l M ‘-}9‘5,:;,’
Ox|” 2. /A+—=110Cy}-
and (285)
22
jox]

Equation (27) implies vortical flow, however, which type of
flow cannot be treated by the present-analysis sinee equation
(23) is violated.” Equation (28) is then the requirement con-
sistent with the basic assumptions-of this apalysis. Com-
paring the relations of equation (28; with the transformation

cquation
0d_ M /oA, oA )
0% 9 Mi—1\0Cy ' Ol

leads one to the conclusion, however, that

sl 10a] ,
Rty @

7 Thix concluzslon i« gasticularly evident In the tase of pure vortical flow, or say vortieal
flow-with 8 Qiperimposed uniform stream directed along the st of the vortex, in which

casts o—f =, and henee equation (24 certalnly docs not follow from equation (22)

OF THREE-DIMENSIONAL HYPERSONIC FLOWS 5

or, in Tect that consistent with equation (25) geodesiclines
can be {reated -as-surface streambines.  With (his informa-
tion we are enabled to construct the flow fild about-a_body,
having once determined, for example, the flow in the region
of the leading edge (or wliges) thereof.  This result-follows
since a geodesic line, and henee a streamling, on the surface
is fixed, provided its direction at any point is given (see, ¢.g.,
ref. 28).3 With this knowledge of the location of surface
streamlines, flow in the planes tangent thereto and normal
to the surface-may be caleulated approximately in-the rela-
tively thin-region between the surface aml bounding:shock
waves, using-the generalized shock-expansion method:ia the
manner described in reference 7.

A partial-check on these observativns is afforded by study-
ing the flow about_a swept aivfoil.  Tn this case flow-at the
surface may be caleulated with good accuracy, using the
shoch-vxpansivu=method in combiuation with simple-sweep
theory. For thin airfoils (on the surfaces-of which the
appropriate geodesics have essentinlly the direction of the
free stream) thie generalized shioch-vapansion method-of-this
paper reduces -to -the slender-airfoil method of feferenve 7.
Thus, in this case, it-is evident from the results of-reference 7
that the generalized method will predict surface pressure
cocflicients-in-crror by less than 10 pereent, providing the
component of free.stream Mach number normal- to the
leading edge-is greater than about 3. It is-of -interest -nlso
to consider a- thick aivfoil to ascertain the accuracy with
which thig»eihou «pplies to flow with appreciable curvature.
To this- end, surface pressure coeflicients and streamlines
have been caleulated for a  20-percent-thick biconvex
aitfoil (at-zero-incidence) swept 60° and operating-at Mach
numbers of 10 and infinity y=1.1). Conditions at the
leading edge-were determined from exact shock-wave rela-
tions_for both methods, The results of these ealculations
are presented.in figure 3, and it is observed that the-pressure
distributions- determined with the shock-expansion method
for swept. airfoils and the generalized shock-expansion method
are in reasonably good agreement at both Mach numbers.
The streamlines-are also in reasonably good agrecment over
the forward _portion of the airfoil, although, as would be
expected, somewhat poorer results are obtained over the
afterportion. Ttismot surprising, in view of the-underlying
assumptions of the generalized shock-expansion method,
that it is generally more aceurate at the highest Mach
number,

In the preceding discussion cucuistices were-dediced
under ~which steady flow at lugh supersome speeds abuut
three-imensional shapes coulld be  cunstructed  approai-
mately, using-the basie touls of W u-dimensional supersouic
flow analysis, namely, the oblique shock equations of
Rankine and-Tlugoniot and the corner expansion-cquations
of Prandti-and_Meyer. Several possible exceptions to-these
civcumstances immediately come to mind. These include
conical-ty pe flows-and flow in the region of-the-up of-a=wing,
or at the discontinuous juncture of a wing and body, to
mention a-few, Tn such flows equation (23) may not be
satisfied, in which case two-dimensional flow in planes

i{asudden change of s fue slope gauses an oblbjue shock wave m s concentrated Prandil
Meyer tye expantion fsn, the strecamlines {1 the downsticats direction ate defined «n the
basis of thele flow direction imnadistely following the distntinnity in slopx,
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normal fo a surfrce caunot be expected? It might be
reasoned, therefore, that these flows-cannot, in general, be
treated by the proposed method. This observation may be
correct; however, in one ease investigated thus far in this
connection, namely, flow in the region of the nose of non-
lifting bodies of-revolution (see ref. 10), it was found that
although cquation (25) is not satisfied, flow along streamlines
is nevertheless -of approximately the Prandtl-Meyer typo.
Thus we are-led to expeet that perhaps a less restrictive
requirement than the satisfying of equation (25) may be
imposed-to insure that flow along streamlines is of this type.
Such a requirement is in fact. easily obtained by reconsidering
equation (22) in the form

¥ Une may note that in wnie (ases ol ihis natute the ow inoserlsting planes of the strvam
lines may be of the two-dimensional or even the shnpler Prandth-Meyer ty pe, nlthough these
planes may not be normal to the sutlface.

op_ pwt [R5 M 05 , 104 :
or \Ap—1Ldr Ay AN b’y)é ©0)
thus yielding p

25 M L, 104 .

e = ioty T ar Sy @n

It 1s evident that equation (31) embraces equation (25) as a
speetal ease and that Prandtl-Meyer flow obtains along
streamlines if

o] 1 0a

30w X" 3y @2)

Ky
to the order of a number small compared to yi=-1108)
M or

"This-vesult implies that althongh flow inelination angles are
not necessarily constant along €, lines, pressure is approai-
mately constant. (see-eq. (17)).
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streamlines may _generally be tahen as geodesies

TWO-DIMENSIONAL APPROACH TO CALCULATION OF THREE-DIMENSIONAL RYPERSONIC FLOWS 7

1t is clear that the increased generality of the above result
has been obtained at some expense in our hnowledge of the
streamline flow patiern. For example, it is not now iudi-
cated that (within the framework of this analysis) sueface
additional
huowledge of the flon must be had i order to determine
these streamlines.  If they- ave known, however, the caleula-
tion of the whole flow field is materinlly facilitated by the
above considerations.

Thus fur onls steady flows-have been considered,  The
next problem is to extend these considerations to nonsteady
flows and some-aspects of this matter will now be discussed.

NONSTEADY FLOW

The methods of analysis in this case are eutirely analogous

to-thuse employ ed=m the study of steady flow, the smgular

conttasting feature being that derisatives with respect to
time-in equations (1) through (11) cannot now be neglected.

With-this point-in mind, only pertnent results ave discussed
helow.

-Characteristics theory.—'T'lic compatibility equations relat-
g fluid properties along Mach lines may be weidten as
follows:

aacl:, 1-\.}2.!51 O(,',, ;\I ar/)+u ‘fr : g—?>+
;‘Ilg glt, \Iu( )]} @3
and
a‘acli“\i;,?f,{oc,; 3Gy [‘M!—l(g
A E))

The definition of the X-Z plane as the osculating plane of a
pathline (streamline in steady flow) remains as bcfmo hence
equation (19) still applies in=the .X-1" plane in the region of
the-origin, T'he rotation of-the osculating plane and varia-
tion of the principal curvature of a pathline with motion
along it are now, however, obtained with the aid of the
relations

FA__ 1 ddp ds .
drt™ " putdz \dy ¥ —ww (11‘) (35)
and
ds_ 1 d <)p> ( 3du, 1 (_IQ)(I& @6
der™  pu?de\oz Oz wdr’ pi*dr/ dr 36)
where
tl.r O:t (bl) 7)

These equations-are basic to chavacteristies theory in its
application to three-dimensional nonsteady flows (sve ref.

20), However,-as-in the case of steady flows, they can best.

be-employed for our purposes {o obtain a simplified method
of-caleulatiors,
BTS2

Simplified two-dimensional theory. It is recalled that-the
essential simplification i our treatment. of three-dimenstonal
stenddy flows derived from the fact that they often-appear
locally two-dimensional and hence they can be treated with
the generabized shock-expansion method of reference 7. In
the follow inig study of nonstendy flows we will profit from this
eaperietiee by antipating that the desived sumplified theory
is ngain this shoch-expansion method,  Accordingly, our
problem is reduced to that of determining the conditions
under which the method ean be applied to the ealeulation of
nonsteady hypersonie flows,

One condition is, for all practical purposes, self-evident,
namely, the local Mach number of the disturbed flow-must.
be everywhere large compared to 1. ‘This requirement must
manifest itsell since, otherwise, nonsteady disturbances
created an appreciable distance upstream and,or-downstream
of a particle could significantly influeuce its behavior in the
disturbed flow field (sce fig. 4, noting that in case-of -thick
body, particle b is influenced by disturbances originating-in
particles a and ¢) and this situation would preclude the-pos-
sibility of Prandtl-Meyer 13 pe-flow along pathlines. It fol-
lows then that the shock-expansion method can-be-applied
only to thin or slender shapes (. e., shapes producing flow
deflections small compared to 1) at hypersonic speeds.

Fluid patticles-~ o= Wove !;ontso!“-"'\‘\
potticles -v\..\\ L dus!mbmces AN
¢ generated in porticles N w_

o ond € Voo

N AW

Merl_g LIPS )
\\
MO>jent

Shock wove---" ‘\._ M1

Ficure 1. -Propagation of nonsteady disturbances in-flow-about-thick

and thin-bodies,

With this requirement in mind-it is convenient to-rewrite
the compatibility equations (33) and-(34) in the form they
assume when A2 1. Thus with slight rearranging we have

Op ,10p —puty 06 , 105, 10A I owy
ot Tudi="ar \acy,Fusitaroy a5t/
and ‘
op , 10p
oY, pol M

05 105 10a, 1 du
oy T M 3yt ot

Now, consistent with the requirement AL>1, the term
QA uPD on the right in these cquations can be
negleeted by comparison o the other terms.  H, in addition,
we define (after eq. (37)) the derivatives

(1( b(,,, (
and

(1( . O( g‘ (Ol)
and note that now
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then these equations can be combined to yield the pressure
gradient-along a pathline-in the-following form

I_cl&/d(’,,
dp_pd® | d8| ~ dafdCy{ 1 0a ag
de A | de | TdbC, AT By @)
d3fd (%,

But -'giig“' is analagous to D, in_steady flow; that is, in_the
event the-term-(1,0) @3,9y) is'negligible in this expression,
(_115[(1(',,
dofdCsy
shock waves in the flow, Just-as m the case of steady flow
(see ref,-7), however, these reflected-disturbances are of-very
small-strength by companison to the meident disturbances

may be identified with disturbances reflected -from

when A2>1 and so :525:;5,: must be small compared-to 1.
Provided,-then, that
A1
Wi, 1103 B9
&= 31isy

equation-(38) may-be written 1

dp__pu® dj

AT 0y
which result implies, of course, Prandtl-Meyer flow along
pathlines, It follows that equations (39) are suflicient=con-
ditions under-which the generalized shock-expansion-method
can be used to ealculnte nonsteady-hypersonic flows.

When these conditions ave-satisfied, wo note, by analogy
to the steady: flow case, thai pathlines-in the surfaces -swept
out by clements of fluid adjucent 1o shapes in nonsteady
motion are-approximated by geodesics or, even simpler, lines
of curvature-of these surfaces, It is not to be implied,-of
course, that-pathlines must always be such curves=in order
for fluid-properties to behave ag in-Prandtl-Meyer flow. In
faet, again, jusl n< in the case of-steady flow, if the condition
t;—j; M‘g? +;\Ib/{ is satisfied rather than the secound of
equations (39), pathlines are not necessarily geodesies- (or
lines of curvature) even thongh-the first of equations (39)
and-hence-equation (40) holkls-along_these lines.

One notes-that within the framework of this approximate
analysis, the-caleulation of nonsteady flows at the surface
of slender-bodies traveling at high-supersonic speeds should
not prove unduly difficult  To illustrate, consider anoscillating
airfoil as shown in figure 5. The pressure at any point
ajong the pathiine shown is readily deduced by simply

Aarfoil of ime /5 =\ = -~ Shock wove

M1

—
Pathline of-particie strking
feading edge of fime I“-'

Airfol ot time 7y ==v”

Duechion of-rotation
of airfon

Froune 5. Oxcillating airfoil in hypersonie flow.

10 °The desfvation ot equation o) presented buue bas Ui s utue of beiog buth mors gomplete
awd more geners! than the corresponding derfvetion of reference 20,

Y

integrating equation (40, along this hoe from the leading
edge of the airfoil to the point in question. 'The whole
flow field as a function of time may be caleulated by
employing the generalized shock-expansion method  for
steady flows (see-ref. 7) in a series:of planes located small
distances apart-in time.  This example serves to emphasize
that, in general,.the time history of fluid elements Mmust-be
known, at least: 1o the extent of fixing-their initinl flow divee-
tion and entropy.H 1t i3 alse evident that again, ns in the
case of steady -flow, the general results of the analysis are
consistent. with the predictions of the hypersonic similarity
law for nonsteady flows about slender velated shapes tref. 5),
These considerations complete our-general treatment. ¢
inviscid hvpox\bnic flows. 1t is approprinte to turn next to
effeets of-viseosity as they relate to the hypersonie lmundnr\'
layer.

VISCOUS FLOW—THE HYPERSONIC BOUNDARY LAYER:

The arguments presented here are concerned with -the
steady hypersonie boundary layer, and they will e, for-the
most part, physical’?  Furthérmore, they will appear as
natural extensions of conclusions reached in our study -of
inviseid hypersonie flow. Let us reconsider, then, the motion
of the inviseid-fluid, We have established that {his motion
is, under certain well-defined circumstances, confined locally
to planes norinal to the surface of -a-body and tangent to
surface streamlines, Correspondingly, there is no sensible
momentum transfer across these planes. Now if viscous
forces ave setz=up-in the ilow bounding_thoe surface, we recog-
nize that they-will act (o resist. the motion of the fluid—that
is, the motion:in-the normal planes. Evidently, then, these
forces act in-the same planes of local two -dimensional flow
as the pressure forces, and it must follow, of epurse, that
resultant changes in momentum. of -the fluid also occur in
these planes,

Consider now-the changes in energy-of-the disturbed fluid.
These ehanges-¢an be brought about=by viscous or dissipa-
tive work, pressure work, hieat convection, and heat condue-
tion.® It was just found, however, -that the forees doing
work act in-the-normal p]um,s henee -we conclude that the
corresponding chung,os in energy oceur in these planes,
Similarly, heat-is-conveeted in lhe normal planes, since muss
is conveeted in-these planes.  Finally, we conclude nlso that
heat is eonducted Jocally in the normal_planes innsmuch-as
the temperature gradients set up by the action of -viscous
forces are-confined primarily to these planest* Evideantly,

then, changes in energy of the fluid ean be treated locally as a.

two-dimensional:phenomenon in planes normal to the surface
of_a body. -

11 In the special case of slender alefoils for whileh the hy personic similatity parameter of the
flow- 13 Jess than 1, entropy gradlents in the disturbed tlow can frequently ba neglected, with
thendvantage of relasing thete two ¢on ditions and thus wbitanthlly Simphty Ing theprobiem
(s«'.l‘ 7arel29),

v Although not presented, corexponding mathenatical arguments have boen grarstied
asing the Navier-Sfokes and encrgy equations. and ihe Onal readts ~nfirm those obtafned
here, It s indicated, 109, that these rewalts may apply alss to po iteady boundarylayes
flows,

9 Radiation and absorption tnay, of course, a'o contrilrate to the energy change., howevet,
tis beyond the seupe of this papxr 10 consider these phenomens

# One inlRht eonceive of severe temperature geadients belng linposed at the woll bonndaey
by, dm exatuple. extrenely nonunonm witlate cooling.  Such gadieats, i transverse to
streunlines; wold naturally Jovalidote this arrument,
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TWO-DIMENSIONAL APPROACH TO CALCULATIO

Thus far we have been concerned mainly with forees and
their relation to the momentum and energy of the fluid,
The question of conserting mass remains 1o be investigated,
It will be recalled that the requirement of conservation of
mass was the esseutial factor which determined when the
generalized- shock-expausion method could be employed to
caleulate three-dimensional flows. This requirement is
physically (and mathematically; the same, independent of
whether or not viscous-forces come inte play,  We conclude
theu that for the purposes of this study, equation (25) can be
used to determine when the theve-dimensional buoundary oy et
vatt be ealculated with two-dimensional equations,  From
equation (23) it is indicated that the boundary Jayer must be
largely hypersonic if this ealculation is to be permissible.
It Is not to-be implied, however, that the boundary layer
always hecomes iwo-dimensional, as on au airfoil, if the
slream Mach-uumber s made extremely large, For example,
In-the case-of-axial flow- about the right circular cone, equa-
tiou (25) is-violated -independent of Mach_number (just as
with juviscid flow; and we must use something like the
Mangler transformation wef, 30, in the boundary-layer
calculations, -On the other hand, if the body, instead of
being couical, Is-curved- iu-the stream-directon, then 1t is
indicated that the boundary -Jayer flow-should approach the
i o-dimensivnal ty pe-with-iucreasing Mach suniber,

“This discussion completes our arguments regarding the
s odimensivnalicy of diee-dimensional 5y petsonic Hows.
Attention is turned next to-a practical application of this
coneepl.

APPLICATION :OF THEORY TO BODIES -OF REVOLUTION IN
- STEADY FLIGHT

The ecritical-feature of this application is the analysis of
the inviscid flow, since known two-dimensionnl boundary-
Tayer solutions-can be readily employed once this flow is
known. Accordingly, the -following discussion is restricted
to-the-inviseid-flow-problem,

Now it was shown previously in this paper that a lage
Jass- of hypersonic flows which are basically three-dimen-
sional can be caleulated -with a generalized shock-expansion
method which-is analogous-to that employed in veference 7
for-studying-flow about-nirfoils. Specifically, this treatment
is-permissible when-disturbances associated with the diver-
gence of streamlines-in planes tangent to-n surface-can be
considered-negligible-compared to those associated with the
curvature-of-streamlines:-in-planes normal to the surface (see
eq. (25)). For the case of noninclined-bodies of revolution
whieh are curved-in-the stream direction, this requirement is
satisfied when -the hypersonic gimilarity parameter K is
-greater-than-about. 1 (see-vef. 10),  Tor inclined.bodies, an
-additional restriction-is imposed. This point-is perhaps best
clarified by considering the problem of caleulating flow at
the surface.

FLOW AT-THE SURFACE

It follows from the imvised flow analysts that when the
generalized shock-expansion method applies in the region
downstreamn of the vertex, surfuce streamlines can be
approximated by geodesic lines. The only geodesics on
the surface-of a body of revolution which, like streamlines,

N
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do not interseet cach other are the meridian lines. Tu
addition, the meridian liaes are the ouly geodesies which,
lihe the streamlines, puss through the vertex. When the
shoch-expavsion methe! is applied, then, surface streantines
are approaimated by meridian lines.  Strietly  speahing,
however, this approaimution is vald vuly in the case of
a<l<{l (It is, of comse, always true, independent of «
on the eatreme windward and leeward sides of a bods.)
Evidently, then, the generalized shoch-expansion method
sotld Le applicable to curved bodies of revolution only at
small angles of attack i flows characterized by a value of
the Ly persouie similarity parameter gremer Juwa about 1.

The procedure for deternining flow concations at the
surface of a lifting body is entirely analogous 1o that em-

ployed i the application of the shuch-eapansion method:

to the nonlifting body (ref. 10, Thus, it is assumed thae
the flow at thoe vertex 1s the same as that for a cone taugent

to the body at this puint and, hence, may be dotermived

from cxisting conical-flow theors isee, ¢ g, vef. 31 for
moderate supersonic Mach numbers and ref. 32 for nigh
supersonic Mach numbers).  More spedifieally, the Sfach
number at the sertex under the vortieal layer™ may be
calealated by means of the peranent conreal-flow_expressions
in reference 31 or reference 32, The savation of Mach
nuimber downscreant of the vertex s then obtamed by means
of the Prandi-Meyer angle » (see, ¢ g, ref. 34 which in
turn s deternuned from the sseetropic expansion relation

Sutva=dptvn “n

where .t and B are differend poitits on ilie same meridian
line. Since the flow is isentropic in the windward plane of
symmetry downstream of the shock at the vertex and around
the surface of the body, the pressure distribution (in co-
eflictent form) 1s readily obtainable with theaid of the expres-
sion

O 2 (P 11..,)

PUAME DL

where pyp« s the pressure rise across the shoch at the
vertea on the windward sude of e body and 1s determined
from comeal-flow theory. The ratio pyp, s given by

(42)

43)

where A/ is known from equation (41) and A, is the Mach
number immediately duwnstream of the shock on the wind-
ward side of the body at the vertex and, hence, is also
determined ftom conjcai-flow theory,

FLOW OFF TUE SURFACE

Flow in meridian planes around bodies of revolution may
be caleulated by the generalized shock-expansion method in
much the same manner as the procedure employ ed-in refer-
cuce 7 for flow about airfoils. However, the application of
the method is somewhat more complicated for the case of o

1 Sinoe a vortical Tayer exiats around the body sutface at the vertex (see, ¢, g, ref 13} o
vortical kayer tnst sl exist downstream of the vertex,
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TWC-DIMENSIONAL APPROACH TO -CALCULATION

Thus far we have been concerned mainly with_forces and
their relation to the momentum and encrgy of the fluid,
The guestion of conserying mass remains to be investigated.
Tt will be recalled that the requirement of cousersation of
mass was the essential factor which determined when the
generalized shock-eapansion methed could be employed to
caleulate three-dimensional flows.  This requirement s
physically (and mathematically ; the same, indepemdent of
whether or not viscous forces come mito play,  We conclude
then that for the purposes of s study, equation=25 .an be
usel to determine when the thiee-dimenstonal boundary Jayer
can be caleulated with two-dunensional equativns.  From
eyuation (255 it is indicated that the bowndary Jay er-must_be
largely hypersonie if tus caleudntion is to be peimssible,
It is not to be mplied, however, that the boundary layer
always becomes two-dimensional, as on an airfoil, if the
sticam Mach number 15 made extremely large. For example,
i the case of asial flow about the right areular cone, equa-
tion 125 is violated independent of Mach namber (just as
with inviseid flow; and we must use something like the
Maugler transformation wef, 30, m the boundacy-leyer
calealations, -Ou the other hand, if the body, instead of-
being conical, is curved in the stream direction, then it is
indicated that the boundary <Juy er flow should-approach the
twu-dimensional ty pe with increasing Mach number,

This discussion completes our arguments regarding the
ivo-dimensivinlity of thiree-imensional by personic fluws.
Attention is turned next to a practical -application-of this
coneept.

APPLICATION OF THEORY TO BODIES OF REVOLUTION:IN
STEADY FLIGHT

The eritical feature of this application-is the -analysis-of
the inviscid flow, since known {wo-dimensicnal boundary-
layer solutions can be readily employed- once this-flow js
known. Accordingly, the following discussion -is-restricted
to-the inviseid flow problem.

Now it was shown previously in this-paper-that a large
Jass of hypersonic flows which are basically three-dimen-
sivnal can be caloulated with o generalized shock-expansion
metliod which is analogous (o that employed in-reference 7
for studying flow about nirfoils. Specifieally, this treatment
is permissible when disturbances associated with-the-diver-
gence of streamlines in planes tangent: to-u-surface-can-be
considered negligible compared fo those associated with the
curvature of streamlines in planes normal-to the surface (see
eq. 25)). For the case of noninclined hodics of=revolution
which are curved in the stream direetion, this requirement-is
satisfied when the hypersonie similarity parameter KX js
greater than about. 1 (see ref. 10).  For inclined-bodies, an
additional restriction is imposed. This point:is:perhaps best
clavified by considering the problem of caleulating-flow at.
the surface,

FLOW AT THE SURTACE

1t follows from the inviseid flow analysis-that when the
generalized shock-expansion method applies in the region
downstream of the vertex, surface streamlines can be
approximated by geodesic lines. The only geodesics on
the surface of a body of revolution which, like-streamlines,
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do not interscet each other are the meridian lines, In
addition, the meridian lines are the ouly geodesies which,
like the streamlines, puss through the verten. When the
shuch-eaprusion methuld is applied, then, surface streamlines
are approamated by meridian lines.  Strietly  speaking,
however, this approximation is valid only m the case of
a<(<{l. (It is, of course, always true, independent of «
ou the extreme windwaid aud leeward sides of a bods.)
Evidently, then, the generalized shock-eapausion method
should be applicable to curved bodies of-revolution vnly at
small angles of attack 1 flows characterized-by a value of
the hy personic similarity purametet greacer divn-about 1.

The procedure for determinivg flow conditions at the
surface of a lifting body s entirely analogous v that em-
ployed in the applicaton of the shoch-expansion method
to the nonlifting body (ref. 10, Thus, it is-assumed thas
the flow at the vertes is the same as that-for-a cone tangent
to the bods at this puint and, henee, may be determit.ed
from existing conical-flon theory (see, ¢. g, vef. 31 for
moderate supersonic Mach numbers and ref. 32 for nigh
supersonic Much numbersi.  More specifically, the *lach
uumber at the sertex under the vortical-layer ™ nivy be
caleulated by meaus of the pertinent conicalflow expressions
in reference 31 or reference 32. The vadation of Mach
number downsirentn of the vertex isthewoblamed-by means
of the Prandtl-Meyer anglo » (see, ¢ g, ref. 33 which in
turn is deternmied from the iscutropic -expansion relation

Sprtva=dp-tup (41)

where .1 and B are different points-on the same-meridian
line.  Since the flow is isentropie in-the-windward plane of
symmetry downstrean of the shock-at-the-vertex-and around
the surfuce of the body, the pressure distribution (in co-
efficient. form) is readily obtainable with the aid of-the expres-
sion

Om (2t

YMEA\pe s

where pyps is the pressure rise across-the shoch-at the
vertea on the windwaed side of he budy and=is-deternuned
from conical-flow theory. The ratio-p; p, is given by

(42)

o’
=1

» |+7:l ME
I “3)
147, -AR

where A/ is known from cquation (41)-and A/, is-the Mach
number immedintely downstream-of -the shockzon-the wind-
ward side of the body at the vertex and, henee, is also
determined from conical-flow theory.

FLOW OFF THE SURFACE

Flow in meridian planes around bodies-of-revolution may
be-caleulnted by the generalized shock-expansion-method-in
much the same manner as the procedure-employed-in refer-
ence 7 for flow about airfoils. However, the-application of
the-method is somewhat more complicated-for-the case of n

1% R{noo o vortieal layer cxists sround the body surface ot the vertex (se¢, e g, 7¢l. 13 o
vortical lagor mutst alw exist downstream of the vertex,

'
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body of revolution sinee now the -influence of the conical-
flow region:=at the vertex must be-considered.  An analysis
for flow in_the region of the vertex of a nonlifting body of
revolution: (& >1) was presented in reference 34 and expres-
sions were developed which yield-the shock-wave cursature
us.well as-flow conditions along a-line (normal to the body
axis) a short distance downstream of the vertex. This
analysis was extended to lifting -bodies and mure gencral
expressions were presented in reference 32, Thus, initial
conditions-in the region of the vertex can be established.
There remains the determination of flow conditions wlong
meridian Jines downstream of the vertea externally adjacent
to the vortical layer  These conditions may be determined
in the-sante manner as for flow direetly-on the smface (i.c.,
under the -vortical layer), except that-now initial flow-condi-
tions externally adjacent to the voriieal layer at the-vertex
are employed in the isentropic expansion relations, Con-
struction ofzthe flow field between-the shock-and the vortieal
layer in_cach-meridian plane can then proceed in a manuer
analogous-to that for the two-dimensional airfoil discussed
in reference 7. “L'o illustrate, consider the flow in a metidian
plane of a lifting body of revolution:(see fig. 6).

Fraune 6,—Schematic diagram of flow field about a body of revolution.,

All fluid-properties at points N,-\/, 4, BB and so forth, on
the body surface external to the vortical layer are caleulated
with the aid-of the oblique shock-wave, conical-flow, and
expansion cquations. Flow conditions along the line AC
may then be determined (see ref. 32). It will be reealled
(see vef, 7)=that a basic condition-employed in constructing
flow ficlds-about afoils by the-generalized shock-expansion
method is that the pressure is constant along Mach lines
emanating from the surface. In -the case of flow about
pointed bodics- of revolution, this condition ean be relaxed
to account for the small variations in pressure due to-the
influence-of“the conical type flow in-the-region of the vertex.
I'he procedure is as follows. The Mach line A’C" is con-
strncted using the known conditions in the region NAC
shown in the sketch. The net pressure change along this
Mach line (i. e., pc—pa+) is thus determined.  This pressure
difference is then assumed {o tepresent the net pressure
change between-the body surface-and the shock along-each
Mach line-emanating from the surface downsiream of-the
vertex  The flow field is constructed-using this enterin-in
conjunction-with the isentropic-expansion relativus for flow
along stream-lines.

FORCES AND MOMENTS ACTING ON BODIES OF REVOLUTION

It is of interest now to consider briefly- the forees acting
on a body of revolution. In the previous discussion,
attention was called to the fact that the-flow is isentropie
in the windward-plane of symmetry at-the vertex as well as
on the surface-of-the body. This result materially reduces
the net lebor assoviated with carrying: out the caleulntions
to determine the pressure distributions around the body
downstream of -the vertex sinco the pressute rise, as well as
the change in entropy through the shock, need be considered
only in this plane at the vertex. The-normal-force, axl-
force, and pitching-moment coeflicients may be obtained
from the expressions

16
Cy= Vs ’mI’J Jo ;; reospdedr “H
Cy= =T "'mL"J J rmna(l —1)(195 dr {“5)
v 16 " P
C= =331l I J; T:r.r cos ¢ de dr (16)

respectively, where (-is the diameter of the base, r is the
radius of the-bedv, ¢ is the meridian-angle measured from
the plane of symmetry on the windward side of the body,
aud z is measured-along the body axis. If equations (44)
and (46) are differentiated with respeetto « und the condi-
tion of constant—entropy on the surface-is-employed, there
is obfained

ooy o
J p_sin2py 9. p\)
(C5a)ao™ 0T, Z,r,pj JO e S 2 da\p., cos ¢ dp dx

“7
and
16 " (o § 3]]1 -[IA\,' 0 P\) .
Cn),.= YA ‘JO‘JO P §in % 0a\p, re cos ¢ de dx
48)

These expressions-define the initial slopes of the normal-
force- and pitching-moment-coeflicient: curves, respectively,
and may be rewritten in terms of the initial normal-foree-
curve slope for-a-cone tangent to-the body at the vertex:

thus,
tan g (C), [ S 2 (7 4 ()
an by (C,), o o Py sinZu \l l
49)

.\,. "8 (l :
()= (Bt 50 (€ [ 7 5% (15)a (5)
(50)

and

where the subseript TCN refers to a cone tangent at the
vertex. The caleulatious necessary to determne the mitial
normal-force- and- pnt(,lung-nwmcnt-( ey o- blopts for a body
of revolution-are-then relatively simple,-smee (Cya) oy may
be casily obtained from reference 12 or from cl'mrt 8 in
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reference 33, The Mach number and pressure distribu-
tions along-the-body ave obtained by the shock-expansiou
method-for the case a=0. When these distributions have
been defermined, the integral terms in cqunhona (49) and
(50) ave casily ovulun(ul by numerical integration or by
graphical-methods,
* SIMPLIFIED EXPRESSIONS FOR SLENDER BODIES

In the case of slender bodies traveling at. very high super-
sonic Mach numbers and very small angles of attack the
caleulations of {luid properties at the surface become rela-
tively simple. 1In-fact, fluid properties downstream of the
vertex may be related to those at the vertex by means of
explicit algebraic expressions. -In particular, the local Mach
number and pressure distributions on the surface of a slender

-body may-be written (see ref. 32)

Ay

M=
l"'“Y"é'l‘ (Mydy) (1 _-8%)

(61

and

a ,) [(\1.);.0
P ‘Ya‘ vl 4‘[\'
2
-~ -1
7731 (M,55)pwo (1—-3-‘%)]’ —1} (52)

1ospectivd\' where & is-measured relative to the body axis
in these and subsequent expressions. Fquntlons (ol) and
(52) combine-with _the corresponding conical- flow” equations
(ref. 32) to predict the ratios of local to free-stream Mach
numbers_and localto free-stream:statie pressures to be the
saume at.¢corresponding points on related bodies, provided the

Aflow ficlds-about these bodies are defined by the same re-

speetive values of the hypersonic similarity parameters
Mooy and A« (or af3y). These predictions are in agreement

“1’:_)’ '[1 +7i"-‘5(‘\1 . =]{[1+“'_‘m1 . *][1-&7(‘\1 s\)*] “"’

with those of reference 3 for inviscid flow about slender
three-dimensional shapes, and they enable the solution of
cquations {51) and (52) in terms of tabulated functions of
the similarity parameters.  Caleulations over a range of
Mdy from 0.60 to = and a8y from 0 to 1 were-carried outr
for flow at the vertex of a body of revelution® and the results

. Mi)on
of these caleulations for the flow parameters QTL)' 2

(1()"\/1’:3)\");": and (M,6x) 0 are tabulated in table I for 30°
increments of ¢ from 0 to =. For a given A5y and
Maa, the Mach number on the surface of a body downstreamn
of the vertex is readily obtained with the aid of these tabu-
lnted parameters when used in conjunction with equation
(61). The pressure coeflicient. is easily-caleulated by means
of equation-(52).

The results from table I may also be used to good-advan-
tage in determining the initial slopes of the normal-force- and
pitching-moment-coeflicient curves for slender bodies.”” For
example, when A/>>1 and §< <1, equations- (49) and (50)
combine with equations (51) and (52) to yield

(Cram=8 (§) 35 (Coyres [ [1=15* W30 (1=
ST 016) e
and
Coenr=8 () s (@ [ [1=75" it (1-
vl
DT e

respectively, where

(C\' )TY“\
Na L[5
(“1 06.\') 5 + i
Thiese expressions are casily cvaluated with the aid of the
tabulated flow parameters in table I for the case 8, =0.

EXPERIMENT

In order to-obtain a check on the-predictions of the pre-
ceding theoretical analysis, the pressures acting on the
surfaces of ‘bodies-of revolution corresponding to values of
the hypersonie similarity parameter X from 0.60 to 2.1 at
Mach numbers from 3.00 to 6.30 were determined experi-
mentally. The bodies were tested at angles of attack up
to-15%. A brief-description of these tests follows.

TEST APPARATUS

Tests-were conducted in the Ames 10- by 14-inch super-
sonte wiird-tutinel. A detailed deseription of the wind tunnel
and auxiliary equipment.may be found in reference 35.

(3)- 1][|+ i, 6\)’] - ®)

The pressures acting on the model surfaces were measuied
with a mercury U-tube manometer ot by means of MeLeod-
gages when the pressures were low uloug,h to be -recorded
on the latter.

Pressure-distribution models were mounted- on-a-0° model.
support and on 5%, 10°, and 15° bent supports. The-test
models were two tnngcnt ogives lmving fineness ratios 3 and
5 and-two-cones having the same-vertex-angles 13 the ogives
The dimensions of these models nml:lot-ulion,of—thc*prcssm‘c
orifices are shown in figure 7.

$ Th feat ow ¢xp

7 dInreferenoe 32 wete emplos ed In these cafeulations,

1t will be notedd fn table § that the ~alue of @ "};" Is not given for all valnes of . This

results from the fact that as a3y and Madv—w, the

It ofan thin

vorticst lay e 1y v solated and, heng, the dender wne theoty yiclds umealistic 1esults oy these
condltions,
# The Initial axialforercurve slope f, of course, zero duo to sy inmetry,
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Froure 7.—~Dimensions of pressure-distribution test models-showing location of pressure orifices.

TESTS AND PROCEDURE

Pressures on the model surfaces were measured- at 0%,
5°, 10°, and 15° angles of attack-and at test Mach-numbers
of 3.00, 425, and 5.05. Pressures on (he fingness-ratio-3
ogive (as well as on the corresponding cone) were also obtained
at a test Mach number of-6.30 and at 0° and 5° angles of
attack. The Reynolds numbers (based on maximum diamn-
cter of the-ogives) were 109 million at Mach numbers 3.00
and 425, 052 million at Mach number 5.05, and 0.22
million at Mach number 6.30.

The pressures around the -cone surface (0° to 360°) at
meridian stations 45° apart were recorded simultaneously
at cach Mach number and-angle of-attack. In the case of
the two ogival models, the pressures were recorded at
meridian-stations 90° apart. Joach model wag then-rotated
45° about-its longitudinal axis-(except at 0° angloe of attack)
and the-process repeated.

ACCURACY OF-TEST RESULTS

In the-region of the test seetion where the models were
located, the variation in Mach=number did not exceed £.0.02
at Mach numbers flom 3.00 10 5.05 and £0.04-at Mach
number 6.30. )

The precision of the computed pressure coefficients was
affected by inaccuracies in the pressute measurements, as
well as uncertainties in tho stream-angle and the free-stream

dynamic pressure. The resulting crrors in the pressure
coeficients were generally lIess than £0.005 throughout
the Mach number range-for all.angles of attack.

COMPARISON OF THEORY WITH EXPERIMENT AND DIS-
CUSSION- OF RESULTS

According to inviseid theory, the hypersomic sunilarvity
parameter, I, is o significant-index to when the generalized
shock-expansion method can be used to caleulate three-
dimensional=flows. It was-indicated in this connection that
the generalized method should be applicable to -hodies of
revolution when K is greater than about 1. -In order to
check this prediction, the pressure distributions on the
surfaces of two ogives (having -fineness ratios 3 and 5)
traveling at Mach numbers 3.00, and 4.25, and 505 und
at angles-of -attack of 0° 5° 10° and 15° were calculated
by the methods of this paper. Pressure distributions on
the fineness-ratio-3 ogive-at-angles of attack of-0° and 5°
were also caleulated for a Mach number of 6:30. The
conicel-flow theory presented-in-reference 32 was-employed
in these caleulations for determining nitinl-flow-condhtiong
at the vertices of both the lifting and nonlifting bodies.

Comparing first the predictions of theory with experiment **

1 The eaperimentsl dats show it in flipuse & and all subsequeny fikures represent an s erage
of the preseures recotded at eachstationonabody  The seatter of data was Inconzequentlslly
stnall (seeref. 32),
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Frovre 8—~Varintion of pressure coellicient along ogives at a=0°,

fur-the case of-zero Lift, we obserse-in figure 8 that the shoch-
expansion method predices suiface pressure coeflicients close
to those oblained-experimentaily at. values of K greater than
1. As-would he-expected, too, the agreement between the
predicted coeflicients and experiment tends to improve up to a
Mach number of-5.05.  The results of a characteristics solu-
tivn-for a-fineness-ratio-3 ogive at Ma—3.00 (from ref, 36,
are also shown for-comparative purposes. Characteristics
solutivns-are not asailable for the vther eases, however, the
results of Rossow (obtained by correlating the pressures
yielded by charactensties solutions aceording L. the hypet-
sowie stnmlarity law, see ref. 37, are shown. Tt s evident in
tus figure that the agreement between these tesults and
thuse 3 ielded-by - the shoch-eapansion method improves with
inctensing I oy er-the Mach number-range presented. At the
higliest Mach number 0f 6,30 we observe, howes ur, that both
miethods 3 ield-pressuie coeflicients which, although i agree-
ment, ate appreciably lower thau expeniment.  There 1s no
particulat reason, o thie basis of past-experience or otherwise,
to-duubt the-accuracy of the charaeteristics theory for this
budy. Iu this connection, it-should be noted that the theory
is=genetally e good -agreement with eapetiment at all the
lower Machi-numbers,  It-seems logical, therefoue, to suspeet
that the departure of theory from expeniment at 4/, —6.30 is
caused-by viscous effects an the flow,  More speaifically, it s
_ suggested that=ths departure may b traced to a substantial
incredse in thickness-of the laminar boundary lnyer on the
ogive. The low Reynolds number of the tests and, to a
somewhat lesser extent, the high Mach number coald produce

. e i o o~ —— — — ——— - — _— ——— a — — -

stich an inerense. 'This matter will be considered further-in
the discussion of Ly personic houndary -luy er ealeulations pre-
sented later in the paper.

It is appropriate now to cousider the reliability of the
shuch-expansion method for lifting bodies,  As shown i
figures 9, 10, and 11, the theory yields good agzreement with
experiment ot the windward side of the fineness-ratio-§ vgive
except at Mo = 3.00 (JC-0.60)."° Disagreement is esvident,
hioweser, on the leeward side of the body at all Mach num-
bers.  In the case of the fineness-ratio-3 ogive (figs. 12, 13,
and 14), agrecment is generally better over the entire hody
at-ench angle of attack, particularly at the higher values of K.
Tt will be recalled from figute § that at =07 thelongitudinal
pressute distributions on buth ogives indieated that-the aceu-
racy of the shuch-vapansion method imcieased as I mereased.
Tigures 9 through 14 indicate that, as would be eapected, this
trend catties vver to the case of liftg bodies, Tt isantet
esting 1o note, alsu, that reasonably goud agreement sith ea-
periment is obtained when K2 1 even though « -8,. Ac-
cordingly, it 15 suggested that so Jong.as K2 1-and-a,8, <1,
the genetalized shock-eapansion methuld can be employ ed-=to
medict sutfuce pressutes along mendian lines as-thougli-they
were streambines, with little sacrifice w aceuracy. TIn this
connection, it should be uoted that the merdian-hines on the
extreme windward and leeward sides of the body y. ¢., ¢—0°
and ¢— 180", respuctively ) are eaactly streamlines.

# [t xhould be noted in fiewne 9 ihal Stone's second-otdes solutlon is emploged st fhe settes
i ¢y

it

since the conlcal-bw theory of reference 32 {s nog
Mo=30)and 3vmil 12,
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Froune 9. -Circumferentinl variation of pressure coeflicient ou a fineness ratio 5-ogive at M, =3.00; K=0.60,

Tt appears in-figures 9 through-14; that the most important
factor influeneing the nceuracy of the shock-expansion
method is-the reliability of the conieal-flow theory, since-the
inaccuracies=at the vertex appear {o-be reflected stronglyin
the pressures downstream of the vertex. The question
naturally arises, then, how good-are-the-predictions of the
method when experimentally determined initial conditions
at the vertex-are emploved? To-answer this question, the
pressure-coeflicients on the surfaces of-the-two ogives-under
discussion were-determined in the-following mauner. Initial
conditions at-the vertex were determined-from the measured

static pressures around a cone (corresponding to the vertex-

angle_of-the body)-in-eonjunetion-with-the-measured-shock-
wave angle (in the plane »=0°) obtained from sehlieren
photographs of the conical flow field. The pressure co-
efficients_downstream of the-vertex=were-then calculated-as
before.  The results of these caleulations for Mach numbers
300, 4 25,-and"5 05 are compared with experiment in figures
15 and 16 for «=15° Results for a=15° are presented
because at this angle of attack the applieability of the
conical-flow solutions is most marginal. It is observed in

figure 15 (a) that the theory yields results-which indicate an
underexpansion of the flow on the sides of the body (¢=45°
and ¢==90°). This-result is not. surprismg since afdy >1
and K<{1. It-would-be expected, then, that-the-true stream-
lines would deviate considerably from a meridian-line, In
other words, flow disturbances in planes tangent-to the body
at the surface are-no longer small compared tozthose in axinl
planes. It can be-scen-from figures 15 (b) and (¢) that as
the Mach number, and.hence, K, is increased; botter agree-
ment is obtained. This result is attributed-m part to the
fact-that the streamlines of the flow deviate less from meridian
lines as K is increased. The same general trend may be
noteld iu figwe 167fut the fineness-ratio-s ogive, Ilowever,
in this case, a;bx<_1-and over-all agreement between theory
and experiment-is improved. In fact, good-results are con-
sistently obtained=by theory except on the extreme leeward
side of-the body where-it-is probable that viscous effects are
influencing the pressures. There may be-some separation
of flow over this portion-of the body although:no evidence of
this could he determined from the schlieren photographs.
In the case of the fineness-ratio-5 ogive, schlieren-evidence
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indicated-flow-separation on the leeward side of the body for
B all Mach numbers at a=15° 16 is evident from these
figures-that in-any event-the shock-expansion method will
~yield better results when initial conditions at-the vertex are
determined from cone tests rather than from presently
. available cone theory.

There-now-remains the determivation of the accuracy of
the predictions of the generalized shock-expansion method
for the flow field (other than the surface) about a lifting
-body of revolution. To this end, flow in the plane of sym-
metry {(¢=0° and ¢=180°) was calculated for cach ogive
traveling at a Mach number 5.05 and at an angle of attack
: -of 10°  Flow in a side meridian plone (¢=900°) was also
- calenlated for the fincness-ratio-3 ogive. The resulting
shock-wave shapes are compared with the actual shapes (ob-
-tained- from:schlicien photographs) in figure 17, The theo-
retically determined-conical shocks are also shown for con-
trast -In the case of the fineness-ratio-3 ogive (K=1.68 and
: afby=0.53), theory and-experiment. are obseived to be in
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excellent agreement in the plane of symmetry. The same
observations may be made for the side meridian plane. In
this latter connection, it 1s of interest to point out that es-
sentially the same result is obtained when the shock is as-
sumed circular in cross-scctional planes and its location de-
termined from the calculations in the plane of symmetry.
In the case of the fineness-ratio-5 ogive, the poor agreement.
on the leeward side of the body is due to the limiwations of
the conical flow theory employed at the vertex. If esperi-
mentally determined iuitial conditions are employed good
agreement with experiment downstream of the vertex is
obtained.

Although the predictions of the generalized shock-expan-
sion method have been checked only at the inner and outer
boundaries of thy flow field, it is expected that equally good
results would be obtained at intermedinte points in the flow

field. This conclusion is based on the fact that the bow

shock waves were obtained as a result of the caleulations of
these intermediate points,
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1t is appropriate now to consider briefly the forees exper-
ienced by-the ogives.  To this end, normal-force coefficients
were obtained by integrating:the theoretical pressure-distri-
butions for-the two ogives at-a-Mach number of 5.05. The
results of these ealenlations are compared in figure 18 with
those obtained from integrated experimental pressure dis-
tributions-for values of K of 1.01 and 1.68. [t is_observed
that although theory yiclds results which are, in_general,
higher than-those obtained by experiment, agreement im-
proves with inereasing I The same trend with Kis evi-
dent for the initial normal-force-curve slopes obtained-with
the nid-of- equation (49). Axinl forees were also obtained
for these ogives and, as indicated in figure 18, the-shock-
expansion method yields generally good agreement with
experiment-even at a value of K us low as 1.

L2 T
: 1Of——
E .8 - : V4
: : )

(o)// G ~\

12 T T 1

Integroted:= expensmental
pressure- distributions

- {ntegrated -thecretical
= T pressuce distibubions

Normol~and oxicl=force coefficients, Gy ond £y
o

@

: ————— °(C/Va)..o [Equohon (49)]

z 6 _ N
’/
; a —
- : CN ““. //’
22—t - e
E (b), L~ G —0
LR e T T A

e
Angle of ottock, a, deg
F (a):=K==1.01
- by K=1.08

N Fiovnr 18, Nunmal and axibforee coefficients for ogives at
M, =505,

Liet us-consider now the predictions of the hypersome
slender-body theory. To this-end, caleulated pressure co-

- PR

eflicients-for the (wo ogives at a=0° and a=5° are com-
pared with experiment in figures 19 and 20, Tt appears from
a comparison of figures 8 and 19 that the slender-body theory
will yield more aceurate drag-coeflicients than the-general
theory at- a=0° particularly at the lower values of K,
‘This result is, of course, fortuitous, In the caso-of lifting
bodies (fig. 20) the slender-body theory yickls results which
are somewhat less satisfactory-at all values of K. However,
the theory displays suflicient- acenracy for many engineering
purposes-even al =1, This-point is particularly evident.
for the more slender of the two bodies as indicated in-figure
20. It is-also interesting to note-the comparison-of theory
utid experiment shown in figure 21 for the initial=normal-
force-curve slopes and centers of pressure of a famdy of
ogives at Mach numbers from 3,00 to 6.30. The experi-
mental data were obtained in -the Ames 10- by 14-inch
supersoniic-wind tummel.  There is-good correlation=of these
data with Mady, the hypersonic similurity parameter for
slender-bodies, and there is gond_agreement with-theory for \
values of- M8y greater than 1. In view of its simplicity, i
then, thehypersonie slender-body-theory should-prove useful
and its_application is further-facilitated by the-preseniation
in this-paperof tabulated values of the pertinentflow para-
meters=for_selected values of /28y and /8y (see table-1).

Up-to_this-point we have been concerned almost-entirely
with the-inviscid theory and-its comparison with experi-
mental data relatively free of-effects of viscosity. As a final ‘
point, it-is uppropriato to test:the two-ditnensional boundary-
layer concept. of this paper by—considering flows-which are
significantly influenced by:viscous elects.

In this:connection it was_noted carly in the previous dis-
cussion -that inviseid theory yielded pressure coeflicients
which -were substantially lower-than experiment. at 3=
6.30, This discrepaney was -traced to the thick Jammar
boundary-layer on the test body. Arcording-to=theory it
should hezpossible to caleulatesthis boundary Inyer-approxi-
mately by means of simple two-dimensional -techniques,
This possibility was checked by caleulating the laminar ‘
boundary layer on the fineness-ratic-3 ogive ut a Mach s
number-of=6.30 and angles-of attack of 0° and:5° The
two-dimensional theory of reference 38 was -employed.®
The body-ordinates were increased by an amount-equal to :
the displacement thickness of the boundary layer. The .
pressure distribution about the distorted body was then
obtained with the generalized shock-expunsion -method.
These corrected pressure distributions and the original
uncorrecled distributions are-presented in figure 22 along
with experiment, It is observed that while uncorrected
pressures:are definitely low,-the corrected pressure-distribu-
tions.ave-in good agreement-with-experiment. TIn=this case,
then, relatively simple {wo-dimensional methods of cor-
reeting pressure distributions for the presence of the
boundary layer are, as indicated by theory, applicable to
the-bodx-of-revolution,

gy

* The iheoiy breaks donn st the et of the body, such s st the Jeadivg edge of an -
fofl. 1t is thercore not applicd In this reglon, and, conslstent with a practice sucoesully
cmployed with stefolls, viscous effects dre jgnored ik caleulating flow at the sertex.
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CONCLUDING REMARKS

A method of characteristics employing pressure and-flow
inclination angles as dependent variables was used to
obtain a simplified approsimate method for calculating
three-dimensional flows at high supersonic speeds. Tt was

OF THREE-DIMENSIONAL HYPERSONIC FLOWS 25

found that whet the flight Mach number is sufficiently
large compared to 1, flow in the osculating planes of-stream-
lines in regions free of shock waves may be of the generalized
Prandtl-Mayer type—surface streamlines in this event-may
be treated as geodesics.  In the ease of slender bodies, these
results apply to nonsieady as well as steady flows. Tho
two-dimensional appronch to three-dimensional -hypersonic
flows was also e~tended to steady boundary-layer flows.
Bodies of re.olution in steady hypersonic flight were
considered as an example of shapes producing three-dimen-
sional flow ficlds which appear locally two-dimensional,
With_the assumption of conical flow at the vertex and-small
angles of atlack, simple approximate solutions were obtained
which yield the Mach number and pressure distributions on
the surfaces of such bodies. Surface streamlines were
approximated by meridian lines and the flow field in meridian

planes was caleulated by means of a generalized shock-

expansion method. In the special case of slender -bodics,
simple explicit expressions were obtained for the Mach
number and_pressure distribution on the surface.

Surface pressures and shock-wave shapes were obtained
experimentally at Mach numbers {rom 3.00 to 5.05 for two
ogives having fineness ratios 3 and 5 and for two- cones
having the same vertex angles as the ogives, The-predic-
tions_of the methods of this paper for the-surface pressures
and-shock-wave shapes were found to be in good agreement
with experiment at values of I of about 1, or greater, when
a6y (the ratio of angle of attach to semivertex-aungle)-was
about 1/2 or less. For increasing values of this-parameter,
agteement. deteriorated but was still reasonably good for
vidues-of afsy up to nbout 1. Experimental: surface pres-
sures-at a Mach number of 6.30 and angles of-attack-of-0°
and 3° were also obtained for the fineness-ratio-3 ogive.
The predietions of the shock-expansion method when
employed in conjunction with a two-dimensionalboundary-
layer caleulntion were found to be in good agreement with
experiment.

dn view of these results, it is concluded that the generalized
shock-expansion method should prove useful in treating
three-dimensional hypersonic flow fields about practical
aerodynamic configurations. Furthermore, it is indicated
that methods of treating two-dimensional  hypersonic
boundary layers may, in like manner, prove useful in-pre-
dicting three-dimensional hypersonic boundary layers.

AMES ABRONAUTICAL LaBORATORY
Nattonar Apvisony CoMMiTTEE FOR AERONALTICS
Morrerr Fikup, Caurr,, 2ug. 16, 1962



—

™

=

b,

6.

13.

—
-y

18

. Hayex, Wallace D..-On Hypersonic Sunilitude,

F

T gt

REPORT 1249—NATIONAL ADVISORY COMMITTEE FOR AERONAUTICS

REFERENCES

. Tsien, Hsue-Shen. Similarity Laws of Hypersonic Flows, Jour,

Math, and Phys., vol. 25, no. 3, Oct. 1946, pp. 217-251.
Quart. Appl.
Math,, vol. V, no. 1, Apr. 1947, pp. 105-106.

. Ilamaker, Frank M., Neice, Stanford 13, and Eggers, A. 1., Jr..

The Similarity Law for-Hyperzonic Flow About Slender Three-
Dimeunsional Shapes.  NACA TN 2413, 1951,

Lin, C, C.. Reissner, B, and Tsien, H. S.: On Two-Dimensionat
Nonzteady Motion of a Slender Body in a Compressible-Fluid,
Jour. Math. and-Phyz, vol. 27, no. 3, Oct. 1948, pp. 220-234.

Hamaker, Frank M., and Wong, Thomas J.: The Similarity- Law
for Nonsteady Hypersome Flows and Requivements-for the
Dynamical Sumlanty of Related Bodies in Free Flight,  NACA
Rep. 1147, 1953, (Formerly NACA TN 2631)

Guderley, G.x Extension of the Characteristics Method, British
R. A, E. Library Trandlation No. 151. (From Lilienthal-
Geaellschaft Rep.-139, pt. 2, pp. 15-22), Jan. 1947,

. Eggers, A, J., Jr,, Syvertzon, Clarence A., and Kraus, Samuel: A

Study of Inviscid Flow About Airfoils at iligh Supersonic
Speeds. NACGARep. 1123, 1953, (Formerly NACA 'TN"2646)

. Mass, Inst. Tech., Dept. Elee. Engr., Center of Analysis: Tables

of Supersonfo-Flow- Around Cones. By the staff_of-the-Com-
puting Scction, Center of \Analysis, under the . tion of
Zdenck Kopal. Cambridge, 1947. Tech. Rep, No. 1.

. Van Dyke, Milton-D,: A-Study of Second-Order Supersonic-Flow

'l‘hcor\ NACA-TN 2200, 1951,

. Eggers, A, J., Jr., and Savin, Raymond C.: Approximate-Methods

for (‘alcnlming the Flow About Nonlifting Bodies of-Revolution
at High Supersonic Airspeeds.  NAXCA TN 2579,.1951.

. Stone, A, H.: On Supersonic Flow Past a Slightly Yawing Cone.

Jour. Math. and"Phys , vol. XXVII, no. 1, Apr. 1018, pp: 67-81.

. Mass. Inst, Tech,, Dept. Elee, Eugr, Center of Analysis: Fables

of Supersonic Flow Around Yawing Cones. By the stafl of the
Cotuputing Section, Conter ol Analysis, under the direction of
Zdenck Kopal.  Cambridge, 1947, Tech. Rep. No. 3.

Ferri, Antomo. Supersonic Flow Around Circular Cones at Angles
of Attack, NACA Rep. 1045, 1951, {(Formerly NACA TN
2236}

. Ferri, Antonto: The Method of Charactenstics for the Determina-

tion of Supersome Flow-Over Bodies of Revolution- at-Small
Angles of Attack.  NAGA Rep. 1044, 1951, (Formerly- NACA
TN 1899)

Mocckl, W, E.. Use of Gharacteristic Surfaces for-Unsymmetrical
Supcr-omc Flow Problems. NACA TN 1849, 1049,

Coburn, N., and=Doiph,-C. L.: The Method of-Characteristics-in
'l‘hrcc-l)imcxmonal Stationary Supersonic Flow of-a-Compres-
sible Gas.  Proc. Symp. Appl. Math,, vol. I, pp. 55-66. Amer.
Math. Soe., New York, 1949,

Thornhill, ¢, K.: The Numerical Method of Characteristics for
Hyperbolic -Problems in Three Independent Variables.
ment Research Establishment
Supply, Sept. 1948,

Sauer, Robert. Recent-Advances in the Theory of SupersonicFlow,
NAVORD Rep. 1593, Mar. 20, 1951.

Arma-
Rep. 20/48, British Ministry of

. Coburn, N

—

. Newton, Isaact Principia— Motte's Translation Revised.

. Busemann, A.: Flissigkeitzeund Gasbewegung.

N

. Oswatitsch, Klaus: Similanty Laws for Hypersome Flows,

20. Lighthill, M. J.: Oxcillating Airfoils at High-Mach Number.

. Stafl of the Ames Aeronautical Laboratory:

.t Characteristie Directions in "Three-Dimensional Super-
sonic l‘lm\* Amer. Math, Soc. Proc,, [, 1950, pp, 241-215.

Lggers, A, J., Jr.: On-the Calculation of Flow About Objects.
Traveling at Iigh Supersonic Speeds,  NACA I'N 2811, 1952,

. Busemann, A, and Walchner, O.: Airfoil Characteriaties at Super~

sonie Velocities. Britiah R, T P, "T'rans l786 (Forschung
auf dem Gebicte des Ingenicurwesens, vol, 4, no, 2, March/April
1933, pp. 87~02)

Moore, Franklin_K.: Second Approvimation to Supersonic Conical
Flows, Jour. Acro. Sci,, vol. 17, no, 6, June 1950, pp. 328-334,
383.

Univ,

of Calif, Press, 1946,

Handwdrterbuch

der Naturwissenschaften, Zweite Auflage, Gustav Fischer, Jena,

1033, pp. 266-279.

. Ivey, L Reese, Klunker,-E. Bernard, and Bowen, Edward -N.: A

Mecthod for -Determining the Acrodynamic Characteristics of
Two- and Three-Dimensional Shapes at Hypersonie Speeds.
NACA TX 1613,.1918.

Grimminger, G, Williams, E.-P, and Youug, G. B. W.: Lift-on
Inclined Bodies of-Revolution fn Hypersonic Flow, Jour. Acro.
Sci., vol. 17, no. 11, Nov. 1950, pp. 675-690.

Kungl,
Teknicka Hogskolan, Stockholm. Institationen for Ftygteknik,
Tech, Note 16, July 19, 1950, pp. 4+5.

Graustein, William:C: Differential Geometry,
1935, pp. 119-156.

MacMillan-Co.,

Jour.
Acro, Sci., vol.-20, no-6,-June 1953, pp. 102106,

. Mangler, W, Compressible-Boundary Lay ers on Bodies of ‘Revo-

lution.  Ministry of=Aireraft Production, Volkenrode,-Rep.-and
Trang. No. 47, Mar._15, 1946,

Roberts, Richard C., and-Riley, James D.. A Guide to the Use of
the M. L T. Cone Tables, NAVORD Rep. 2606 (Acro-Bai-
listic Research Rep.-123), Apr. 1, 1953,

Savin, Raymond C.. Application of the Generahzed Shoek-Espan-
sion Method to Inclined Bodies of Revolution Traveling at
High Supersonic Airspeeds.  NACA TN 3349, 1955.

Equationy, Tables,
and Charts for Compressible Flow, NACA Rep. 1135, 1953.
Eggers, A. J., Jr, aud'Kraug, Samuel. Approximate Caleulation of
Axisymmetrie Flow Near the Vertex of a Body Traveling=at
High Supersonic Speeds.  Jour. Aero. Sei., vol, 20, no, 3, Mar,

1953, pp. 215-217,

. Eggers, A J, Jr, aud.Nothwang, George J.: The Ames 10--by

14-Inch SupersonieWind Tunnel,  NACA TN 3095, 1951

. Ehret, Dorris M.: Accuracy of_Approximate Methods for Predict-

ing Pressures on -Pointed Nonlifting Bodies of Revolution i
Supersonic Flow, NACATN 2764, 1052,

. Rossow, Vernon J.: Applicability of the Hypersonic Similarity

Rule to Pressure Distributions which Include the Effects. of
Rotation for Bodies-of Revolution at Zero Angle of Auack
NACA TX 2399, 1951.

Bertram, Mitehel- Hi: An Approximate Method for Determining
the Displacement-Effeets aud Viscous Drag of Laminar boundary
Layers in Two-Dimensional Hypersome Flow,  NACA TN 2773,
1952,

AL SR G4




3

TWC-DIMENSIONAL AFPROACH TO CALCULATION OF THREE-DIMENSIONAL HYPERSONIC FLOWS 27

TABLE I—TABLE OF FUNUTIONS FOR HYPERSONIC SLENDER-BODY METHOD

PiiPe M) ey ! 1M,) s
et S for pm® == or gm0t | == ot pm
(YA T Liathe My lore | i ot gzt
Ll [ i | ~ i i : ! 1 :
afdy | ~ Wy 1 ~. ¥, o 1 ;
N‘ [ 'owr 040 1tom 1 oM ' 1w _‘,d’\.\\ 0 {020k 0|0 ; LY, i 0ol f 040 | 00 | 00 | 1
S— JSERS SRRSO, BSOS N SRS AESRPTSIv oo S S e e e e o S S S,
‘ ; : e
e lamium S406 613 800 0.0 1.021°1.021 {1,020 LOI® (LOIT 1014 (2] Lo2t ooz 0030900 0.0271 10,82
] 29633517 I d0t faw A %0 ro21 |Loig fLo17 [Lols (1012 |1 o 0 Lozl | 9918 | o000 {92 | sat0 [ A3
10 240 2052 3.9 4.3 18 Lo LO19 {L0l7 {Lo13 fLOI0 fL07 |LOOd 1w 10D | 12| Q405 | NO6L | SIS | 3u9I
b 2ot 2619 X301 otz i .2 1017 [LOM 11010 (1.006 1003 | o L2 ]l.ul:’ T ooz | N7 SIS | EI60
N TOl0 ‘2408 3128 3t 1t L& LO18 11012 11,007 |Lood |, o0t 140 1016 | a3 [ gloz | a2 | maia |, 7100
T 1791 23823013 'ATT3 6 .0 Lol 0N LS (Lol | .t L@ LM 08T | aws e | B0, e
120 103273 2007 L0 N LW 1013 TLOM 11004 | vewd | Wy | wip 1'% 1013 | ‘v I
200 160,227 IS 36K U 2.0 L012 1,007 |L002 | 9881 | Y40 | v 20 1012 | .98
250 (L0 22 3uw N 2% LOH L0 15000 | 9931 | 0OM | ‘gi8 2.5 LOIL | B2 ‘ :
oo | L3LZG6 .20 35 13 30 1010 JLOK VMO | LGRYT | 8T 3o LO10 | .S | X
10 LG 2080 2716 49 4 38 4.0 LO0Y {10 | 40r2] 024 | s | R 4.0 1009 | 9320 ‘
600 142612008 2.0 40 43D & 1008 {1002 | 09 | (9910 | ONG3 | W22 W Lons | (92
10,00 L4102 (2671 dis {4 318 o ) LoorjLoor | W03 eRNG | mI2 | 1000 Loo7 | s
Y L1400 {103 2,662 3437 [4.307 © ! 1.007 1001 |80 | . RUCIRE ] * f Lot .92 | %0 .
i
. P e .
ATA i M)y
M,by tor pmo* 222 for pmo0® Mdr=rpor mpsoe :
My kY
] ; i ‘
o0 | gasliswr s s | Loma | s .6 |.owat | 2y ® Lo wir .9751 9132 ai97
N .72745.:\)70" 63 1 60M | 6444 | 62U b Y0 | 067 N LO2T | W49 | 467 h‘m{.ﬂlﬂ)
100 | It SIS LT | L6l | Taw | DI L0 .9630 | 933 Yoo o1 | 9T | ems| s | NI 3380
bR am S fmian 1R EowloER o nw oA el ae) A
10 TLZALUGILOM | w0 | R | sTR L& |9 v R R G TR TR 1] 7156 | 67T
180 VLSLZD IAD Lo | wim | w6t 1% @841 v208 floizl w3 | weoe 42 |
2.00 113897 'L N2IL )R LG (1L OM 13 2.0 W6 | W 2m L LO12 | 9328 | . R828 [ J6174 | A2
20 136 Lw02.L20 LSS (L0 | eI 20 94T | NG 20 Lol Tl A 62, 2129
300 [L60L4R3II3A LIW {1091 | e 3m 9238 | 9041 I (Lol ] MO | 08! T . 30
{00 PLRIZ LA LLI0G (L 20 1L ILoX 4.0 L0189 U 400 | L009 [ 9138 | 5234 | 7313 .38 .
600 LGOI ILAS2 (LT LIS (10K 6.0) .m.\zx,w 600 LOM, 9oL lstee i) L
10.00 {2022 4,710 (L483 (L3W LITL ) 10,00 | 9138 | 5039 10.00 LR R 11 I
- j2ofo o L (L3 110 Lo - ez R - RTINS ) ¥ MM R '
[ATA N M)yuy
=222 tor om0 S 2t or el
My ¢ Mo forexl )
! 1 [
0 1021t ‘Lozt oz oz ]l,om i1 N rea frow Lo | o | osns | saiz 0
b 102131 022 '1.023 {1023 11.022 11022 &0 1.021 11,001 ) WOL | w66 SY002 N
100 1019 1.0 1,020 {Lox {1019 Lot Lo 1.ale L0610 | 037 | L9086 | 86 rm
12 LO1? LOISIIAOIR L0183 i1, Lo 1.2 LOIT | U851, 9221 | .NR33 | 8437 1.2
140 1'0l6 L.oi6 .L.ola [1.ol6 [L016 Lol 14 LOI6 1, @812 | (0463 | 9008 | . 28 L40
L@ LOI¢ 51.0134LOIS 1015 11015 11015 1.60 LOI4 | 967 | 9349 | . 8565 | MOTY 160
L 1013014 1014 (L 01 [Lols 10K L ToI3 | 9730 | 90 | 5916 | 8i6H | Tesy 10
2.00 101241013 {1013 -LO13 |LOI3 {1.01¢ 200 LO1Z | /00 | 023 | .BR34 | 8269 | . 000 2.0
2.0 LOILILON [Loi2 jLoi2 [FO12 \Loi3 2% Lol oo | A4S | a2 | z9
30 101041 010 1L.O11 LO12 !)LOI2 | 012 3.0 1.010 | L9616 | 91521 .8634 | .B191 | 3652 3.00
10 Lo iLog +1.010 (Lot (1oLl 1oL 4.0 Low | et |, M817 ! 89 | T2 L0
6,00 1.008 11,009 11.010 ‘LOI0 'LOIT {LoOIl G600 LODS | 0854 | 004G | R567 | NOBS |, 7367 6.00
10.00 L7 il (L [LOI0 LOLE 10N 10.00 1007 983 |, 359 | w0sd | U3 10,00
- 1,007 :loeil jl.0lo jLoio Lo “ FO07 | (9530 {9023 |, 8520 | L8043 | .. »

08 COMANMINY PHINFING OFL3LC 9954 .




° S ® L o ° - @ ° ® = ]
O] e wol} 2 $31do; ' ™ * wou, Q0 $31d0;
% WBuTesEA ‘VOVN wolg Jlqeuieiqo $ajdo) R GIeM 'VOVN wolj dqev) 180D
. . ., .nuoonn opuossadng ._u_s .
oa nea, _uu:,u,u,u,a 30§ aocn, v:« uoﬁw: x 3:: | e anjea e}
-13)9IEYD NP WOIJ podnpap '8 popam yewyxodde , ¢
1182 NL VOVN "Al uy' "passnoerp pur padolaasp s SN IeINYD 1182 NL YOVN "AX uy ‘pasen:

6yl 199y YOVN ‘m , j0 voSoE LR L sa0y) ojuossadns %-3!.9_ pue 6¥21 "oy VOVN I . Jo uoﬁeE A P ako: oEoEon:n hvaw.ncoc pue
9 puowfey ‘upaeg 11 Apeays JeuoisuSWIIP-31Y; Sufienored 205 2inpaddad v D puowifey  ‘ujaes ‘I Apeajs Jeuo|sucp-s0ay) Jup 18 10] am,pwwoo..n v

lkh- -H -( -kugm uN IHH- ‘-5 -< n‘houum -A
(z°L:1) SIIPTIN "9 (1182 NL $apasaadng "g¥2I "1dod YOVN) @' SaleSIN "9 (1Thz N1 sapasiadng 6421 193U YOVN)
(r-L°1) saueidny g | qey “saferp -dug ‘If gS61  rumiaes "D puowdey (1-e°n saueldaly g *qe) “sadep “dig ‘1 °SGET ‘upaes D puowiey
(€1 sIpog ¥ pue "1 ‘s1983% ' 'V "NOILNTOAZYH J0 SAIAOH (e°1) sajpog ¥ pue "xp ‘s19fidg 'V NOLLATOATYH J0 SAIQOH
(z°1) 3y ¢ OL NOILVOITddV HLIA ‘SMOT3 DINOSHIAXH (z'1n s3uim g OL NOILVDI'TddV HLIM ‘SMO'Td JINOSHIJXH
€z 1°1) "IYNOISNIWIG-TIYHL 0 NOILYIND1IVO JHL (€'2'1°1) TYNOISNIWIA-ITHHL 40 NOILVINO1IVO JHIL
ouossadng ‘mold  ‘Z Ol HOVOHAAY TTYNOISNIWIG-OML AIIJINQ V spuossadng ‘mold  °Z OL HOVOUddY TVNOISNTWIA-OML AIIJINA V
{11 R ‘SO]3NEUOIIY J0} IINWWO) LIOSTAPY TEUOIEN 1 Buaur *OINEUOIIY J0] IIPJWWOD LIOSIAPY {EUOLIEN
-epung ‘sojweudpoldy I 6¥21 "1day YOVN ~epung ‘sdjureudpolsy I 6¥21 "1day YOVN
.SM BOIINSEM ‘VOVN W3 dqruinao $3jdoD .§ BOIRITYSYAL ‘VIVN W0} SIQEUTEIR0 $3jd0D
.nwo&n ojuosadns ysy *spadde djuoszadng 8y
) ® ,oa_u> 123«.& 30 3q 03 LMOYS PUE PO 2116} Je anjes iu:uu.a J0,9q 03 uMoYys pue poyIam 9138}
| ,ﬁt ‘pasnpap nu voﬁun,u ,o.nﬁ_]o,.a,jm ) o (12 H] uoo_,ﬁ% n. uoﬁoi aﬁ,ﬂiou&«
1182 NL VOVN "Al oa_v PUE padolaaap 81 $I1i8]I9): TI3Z NL VOVN "AI | ip pue padoiaasp 8| $o18jIRTeLEYD)
8¥21 "1day YOVN T | 'y uoﬁoE ] .::s 8 o: sjuossadng Apeajguod pue 6¥21, "3dey VOVN ‘TiL | uog1adny %«222 pue
0 —Eo&haz ‘ulaeg 11 »vuzn Teuc)sudw -39t FupeinopEs 10§ 91npadoad v 0 vcoﬁ.»ax ‘‘ujaeg I ; Apeais .3.2!38%-035 Supzinofed uou axmpasoad 'y,

-hh. -.H. .‘ n‘h“gu -n -hh. -.ha .< ankﬂ&um .H
(z°L"1) LIS "9 (1182 NL sapastadng  g¥21 1oy YOYN) @11y SISRIA "9 (1102 NL sepegsadns. -6yt ided YOVN)
(1'L°m saueidnly  °g ‘qey saBep "diz ‘if 'SSE1 'UlA®S <D puouwtkey (1°L°1) seuedaly g ‘qey “saBep ‘diz ‘i 'SE61 "ujAes "D puowdey
(e'n sapod ¥ pue -1p ‘s19833 0 'V 'NOLLATOAIY 4O STIOH (e'n sajpod ¥ pue ‘ap ‘613237 °f 'V °NOLLATOAIY JO SAIQOT
z'n sBuim ¢ OL NOILVOI'TAAV HLIM ‘SMO'TI DINOSHIAXH (z'1) sduim g OL NOILVOITddV-HLIM ‘SMOTI DINOSUIAXH
€z1°7) TYNOISNIRIAQ-IIYHL 30 NOILVINDTVD IHL (€2°1°1) TYNOISNTWIA-3IYHL 30 NOILVINOTIVO FHL
ojuoszadng ‘a0l °Z Ol HOYOUJAAY TYNOISNIWIA-OML QIIJINN v ooszadng ‘Mol g OJ, HOYOUJAY TYNOISNIWIA-OMY GILIINA Vv
: -uv U “S2INCUOIIY JO 3 TWWO) hh§>ﬂ< 1euoIeN A— ..—v 1zudw “SONNEUIIIY J0} AN WWOD hh0n~>—u< TeuojyeN
-gpung ‘sdjwreuipolay I 6¥2% “1day YOVYN -spung ‘edjwreuipoldy ‘1 *an 1day YOVN

L 4




